XML to Python Converter
Convert XML data to Python dataclasses with XML parsing methods
XML Input
Python Output
Python code will appear here
Paste XML in the input area to get started
Python + XML: Perfect for Data Science & Automation
Python developers love working with data, but XML parsing can be a pain. Instead of writing repetitive ElementTree code or dealing with complex XML structures manually, generate clean Python dataclasses that handle all the parsing for you.
Perfect for data science projects analyzing telecom network data, automation scripts processing configuration files, or any Python application that needs to consume XML APIs. The generated classes include type hints and work beautifully with modern Python tools.
🐍 Pythonic code:
Generated classes use dataclasses, type hints, and follow PEP 8 - exactly what you'd write by hand!
XML Network Metrics
Telecom monitoring data:
<?xml version="1.0"?> <NetworkMetrics> <Timestamp>2024-01-15T14:30:00Z</Timestamp> <Region>North America</Region> <Metrics> <TotalTraffic>15.6TB</TotalTraffic> <ActiveConnections>125000</ActiveConnections> <AverageLatency>12.5</AverageLatency> <PacketLoss>0.02</PacketLoss> <UpstreamBandwidth>10000</UpstreamBandwidth> </Metrics> </NetworkMetrics>
Generated Python Classes
Data science ready:
from dataclasses import dataclass from typing import Optional import xml.etree.ElementTree as ET @dataclass class NetworkMetrics: timestamp: Optional[str] = None region: Optional[str] = None metrics: Optional['Metrics'] = None @classmethod def from_xml(cls, xml_str: str) -> 'NetworkMetrics': root = ET.fromstring(xml_str) return cls( timestamp=root.findtext('Timestamp'), region=root.findtext('Region'), metrics=Metrics.from_element( root.find('Metrics') ) ) @dataclass class Metrics: total_traffic: Optional[str] = None active_connections: Optional[int] = None average_latency: Optional[float] = None packet_loss: Optional[float] = None upstream_bandwidth: Optional[int] = None @classmethod def from_element(cls, elem) -> 'Metrics': if elem is None: return None return cls( total_traffic=elem.findtext('TotalTraffic'), active_connections=int(elem.findtext('ActiveConnections', 0)), average_latency=float(elem.findtext('AverageLatency', 0.0)), packet_loss=float(elem.findtext('PacketLoss', 0.0)), upstream_bandwidth=int(elem.findtext('UpstreamBandwidth', 0)) )
Ready for pandas and data analysis! 📊
Built for Modern Python Development
Data Science Workflows
Convert XML network logs to Python objects, then easily transform them into pandas DataFrames for analysis. Perfect for telecom data scientists analyzing network performance.
Automation Scripts
Building Python scripts that process XML configuration files? Generated classes make it easy to read, validate, and modify network equipment configurations.
API Integration
Consuming XML APIs with Python? The generated classes handle deserialization automatically, letting you focus on business logic instead of parsing code.
Machine Learning Pipelines
Processing XML data for ML models? Convert to structured Python objects first, then easily extract features for training your telecom prediction models.
🔬 Data science ready:
Generated classes work perfectly with pandas, numpy, and scikit-learn for comprehensive data analysis!