XML to Python Converter

Convert XML data to Python dataclasses with XML parsing methods

XML Input

Loading editor...

Python Output

Python code will appear here

Paste XML in the input area to get started

Python + XML: Perfect for Data Science & Automation

Python developers love working with data, but XML parsing can be a pain. Instead of writing repetitive ElementTree code or dealing with complex XML structures manually, generate clean Python dataclasses that handle all the parsing for you.

Perfect for data science projects analyzing telecom network data, automation scripts processing configuration files, or any Python application that needs to consume XML APIs. The generated classes include type hints and work beautifully with modern Python tools.

🐍 Pythonic code:

Generated classes use dataclasses, type hints, and follow PEP 8 - exactly what you'd write by hand!

XML Network Metrics

Telecom monitoring data:

<?xml version="1.0"?>
<NetworkMetrics>
  <Timestamp>2024-01-15T14:30:00Z</Timestamp>
  <Region>North America</Region>
  <Metrics>
    <TotalTraffic>15.6TB</TotalTraffic>
    <ActiveConnections>125000</ActiveConnections>
    <AverageLatency>12.5</AverageLatency>
    <PacketLoss>0.02</PacketLoss>
    <UpstreamBandwidth>10000</UpstreamBandwidth>
  </Metrics>
</NetworkMetrics>

Generated Python Classes

Data science ready:

from dataclasses import dataclass
from typing import Optional
import xml.etree.ElementTree as ET

@dataclass
class NetworkMetrics:
    timestamp: Optional[str] = None
    region: Optional[str] = None
    metrics: Optional['Metrics'] = None
    
    @classmethod
    def from_xml(cls, xml_str: str) -> 'NetworkMetrics':
        root = ET.fromstring(xml_str)
        return cls(
            timestamp=root.findtext('Timestamp'),
            region=root.findtext('Region'),
            metrics=Metrics.from_element(
                root.find('Metrics')
            )
        )

@dataclass  
class Metrics:
    total_traffic: Optional[str] = None
    active_connections: Optional[int] = None
    average_latency: Optional[float] = None
    packet_loss: Optional[float] = None
    upstream_bandwidth: Optional[int] = None
    
    @classmethod
    def from_element(cls, elem) -> 'Metrics':
        if elem is None:
            return None
        return cls(
            total_traffic=elem.findtext('TotalTraffic'),
            active_connections=int(elem.findtext('ActiveConnections', 0)),
            average_latency=float(elem.findtext('AverageLatency', 0.0)),
            packet_loss=float(elem.findtext('PacketLoss', 0.0)),
            upstream_bandwidth=int(elem.findtext('UpstreamBandwidth', 0))
        )

Ready for pandas and data analysis! 📊

Built for Modern Python Development

Data Science Workflows

Convert XML network logs to Python objects, then easily transform them into pandas DataFrames for analysis. Perfect for telecom data scientists analyzing network performance.

Automation Scripts

Building Python scripts that process XML configuration files? Generated classes make it easy to read, validate, and modify network equipment configurations.

API Integration

Consuming XML APIs with Python? The generated classes handle deserialization automatically, letting you focus on business logic instead of parsing code.

Machine Learning Pipelines

Processing XML data for ML models? Convert to structured Python objects first, then easily extract features for training your telecom prediction models.

🔬 Data science ready:

Generated classes work perfectly with pandas, numpy, and scikit-learn for comprehensive data analysis!