JSON to Python Converter

Convert JSON data to Python data structures

JSON Input

Loading editor...

Python Output

Python code will appear here

Paste JSON in the input area to get started

From JSON Data to Pythonic Dataclasses

Python's dataclasses provide the perfect balance between simplicity and functionality. Converting JSON to Python dataclasses with type hints gives you the benefits of static typing while maintaining Python's elegant syntax and dynamic capabilities.

For telecom data science projects, network automation scripts, or API integrations, properly typed Python classes enable better IDE support, catch errors early, and make your code more maintainable - especially important for complex telecom data processing workflows.

🐍 Pythonic power:

Dataclasses with type hints give you IDE autocomplete, mypy type checking, and cleaner code!

JSON Input

Network analytics data:

{
  "analysisId": "ANALYSIS_2024_001",
  "networkName": "5G_Metro_Network",
  "isCompleted": true,
  "totalDataProcessed": 15.7,
  "analysisTimestamp": "2024-01-15T16:45:00Z",
  "regions": [
    {
      "regionId": "REGION_001",
      "name": "Downtown Core",
      "totalCells": 45,
      "avgThroughput": 892.5,
      "peakHours": [8, 9, 17, 18, 19]
    },
    {
      "regionId": "REGION_002",
      "name": "Business District",
      "totalCells": 32,
      "avgThroughput": 1205.8,
      "peakHours": [9, 10, 11, 14, 15]
    }
  ],
  "summary": {
    "totalCells": 77,
    "overallThroughput": 1049.15,
    "recommendedUpgrades": 3
  }
}

Complex analytics data structure

Generated Python Dataclasses

Type-safe Python classes:

from dataclasses import dataclass
from typing import List, Optional
from datetime import datetime
import json

@dataclass
class NetworkAnalysis:
    analysis_id: str
    network_name: str
    is_completed: bool
    total_data_processed: float
    analysis_timestamp: datetime
    regions: List['Region']
    summary: 'Summary'
    
    @classmethod
    def from_json(cls, json_str: str) -> 'NetworkAnalysis':
        data = json.loads(json_str)
        return cls(
            analysis_id=data['analysisId'],
            network_name=data['networkName'],
            is_completed=data['isCompleted'],
            total_data_processed=data['totalDataProcessed'],
            analysis_timestamp=datetime.fromisoformat(
                data['analysisTimestamp'].replace('Z', '+00:00')
            ),
            regions=[
                Region.from_dict(region) 
                for region in data['regions']
            ],
            summary=Summary.from_dict(data['summary'])
        )

@dataclass
class Region:
    region_id: str
    name: str
    total_cells: int
    avg_throughput: float
    peak_hours: List[int]
    
    @classmethod
    def from_dict(cls, data: dict) -> 'Region':
        return cls(
            region_id=data['regionId'],
            name=data['name'],
            total_cells=data['totalCells'],
            avg_throughput=data['avgThroughput'],
            peak_hours=data['peakHours']
        )

@dataclass
class Summary:
    total_cells: int
    overall_throughput: float
    recommended_upgrades: int
    
    @classmethod
    def from_dict(cls, data: dict) -> 'Summary':
        return cls(
            total_cells=data['totalCells'],
            overall_throughput=data['overallThroughput'],
            recommended_upgrades=data['recommendedUpgrades']
        )

Clean, type-safe Python code! ✨

When Python Code Generation Accelerates Data Work

Data Science & Analytics

Processing telecom data with pandas, NumPy, or scikit-learn? Typed dataclasses provide structure for complex datasets and enable better data validation.

API Development

Building FastAPI or Django REST APIs? Dataclasses work seamlessly with Pydantic for automatic request/response validation and OpenAPI documentation generation.

Network Automation

Automating network configuration or monitoring with Python scripts? Structured classes make it easier to handle complex network device responses and configurations.

Machine Learning

Training ML models on telecom data? Dataclasses help structure training data, model parameters, and prediction results with proper type safety.

🔮 Python magic:

Combine dataclasses with Pydantic for automatic validation, serialization, and JSON Schema generation!